MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival

نویسندگان

  • Xiaodan Fu
  • Yimin Li
  • Ayesha Alvero
  • Juanni Li
  • Qihui Wu
  • Qing Xiao
  • Yulong Peng
  • Yongbin Hu
  • Xiang Li
  • Wenguang Yan
  • Ke Guo
  • Wenjuan Zhou
  • Yong Wang
  • Junwen Liu
  • Yu Zhang
  • Gil Mor
  • Jifang Wen
  • Gang Yin
چکیده

Ovarian carcinoma is the most lethal gynecologic tumor worldwide. Despite having developed molecular diagnostic tools and targeted therapies over the past few decades, patient survival is still quite poor. Numerous studies suggest that microRNAs are key regulators of many fundamental biological processes, including neoplasia and tumor progression. miR-222 is one of those miRNAs that has attracted much attention for its multiple roles in human diseases, especially cancer. The potential role of microRNAs in ovarian cancer has attracted much attention in recent years. Some of these microRNAs have been suggested as potential therapeutic targets for EOC patients. In this study, we sought to investigate the biologic functions of miR-222-3p in EOC carcinogenesis. Herein, we examined the expression of miR-222-3p in EOC patients, mouse models and cell lines, and found that higher expression of miR-222-3p was associated with better overall survival in EOC patients, and its level was negatively correlated with tumor growth in vivo. Furthermore, in-vitro experiments indicated that miR-222-3p inhibited EOC cell proliferation and migration, and decreased the phosphorylation of AKT. We identified GNAI2 as a target of miR-222-3p. We also found that GNAI2 promoted EOC cell proliferation, and is an activator of the PI3K/AKT pathway. We describe the characterization of a novel regulatory axis in ovarian cancer cells, miR-222-3p/GNAI2/AKT and its potential application as a therapeutic target for EOC patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IL-24 modulates the high mobility group (HMG) A1/miR222 /AKT signaling in lung cancer cells

Interleukin (IL)-24, a novel tumor suppressor/cytokine exhibits antitumor activity against a broad-spectrum of human cancer cells. In a recent study, we showed that IL-24 inhibited AKT in lung cancer cells. However, the molecular mechanism of AKT inhibition by IL-24 remains elusive.The high mobility group (HMG) A1 a member of the non-histone chromosomal proteins and commonly referred to as arch...

متن کامل

miR-148a-3p suppresses epithelial ovarian cancer progression primarily by targeting c-Met

MicroRNAs (miRNAs) are a group of small non-coding RNAs that modulate post-transcriptional gene expression. It has been demonstrated that various miRNAs may be expressed at different levels in different types of tumors. The present study assessed the role of microRNA-148a-3p (miR-148a-3p) in epithelial ovarian cancer (EOC). The results demonstrated that miR-148a-3p was decreased in EOC tissues ...

متن کامل

MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer

Breast cancer (BC) is the leading cause of cancer-associated mortality among women worldwide, with a poor 5-year survival rate, particularly among patients with metastatic BC. Previous studies have indicated that the dysregulation of microRNAs (miRNAs/miRs) is associated with carcinogenesis and metastasis. Thus, investigating the underlying molecular mechanisms by which miRNAs mediate their eff...

متن کامل

miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer

Ovarian cancer presents as an aggressive, advanced stage cancer with widespread metastases that depend primarily on multicellular spheroids in the peritoneal fluid. To identify new druggable pathways related to metastatic progression and spheroid formation, we integrated microRNA and mRNA sequencing data from 293 tumors from The Cancer Genome Atlas (TCGA) ovarian cancer cohort. We identified mi...

متن کامل

The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma

During the dissemination of ovarian cancer cells, the cells float in the peritoneal cavity without access to a vascular supply and so are exposed to hypoxic conditions, which may cause the ovarian cancer cells to acquire a more aggressive and malignant phenotype. In this study, we screened microRNAs (miRNAs) to identify those that displayed altered expression patterns under hypoxic conditions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016